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FAST, FLEXIBLE, RATIONAL INDUCTIVE INFERENCE

1 Research issues

Despite great advances in artificial intelligence (AI) research over the last fifty years, computers are still
far worse than people at solving many important problems, such as learning language, inferring categories
of objects from just a few examples, and identifying causal relationships. The goal of this project was to
develop automated systems that can match human performance in problems of this kind. The approach
that was taken to achieving this goal is one that contributed to the first Al systems: identifying the formal
principles that characterize how people solve these problems. This required combining mathematical tools
from computer science and statistics with the empirical methods of cognitive psychology. By exploiting the
interplay between these disciplines, the resulting research provided insight into how we can make machines
learn, and a deeper understanding of how the human mind works.

Part of the challenge of machine learning research is that it requires dealing with a different kind of
problem from traditional Al. Learning language, forming categories, and identifying causal relationships
are all inductive problems, where the limited data available leave the solution radically underdetermined, as
opposed to the deductive problems such as mathematical reasoning and game-playing in which Al research
has traditionally been successful. Induction has a bad reputation in philosophy, having been called a scandal,
a riddle, and a myth, and one reason for this is that there is no consensus on exactly how such inferences
should be formalized, in contrast to the broadly accepted standard of deductive logic. By studying how
people solve such problems, this project aimed to identify some of the formal principles that characterize
successful inductive inferences. A general overview of these ideas appears in Tenenbaum, Kemp, Griffiths,
and Goodman (2011) and Griffiths, Tenenbaum, and Kemp (2012).

Building on recent work in both Al and cognitive science, this project explored the possibility that
Bayesian statistics can provide formal solutions to inductive problems. Bayesian statistics is based upon
a simple principle that dictates how a rational agent should change his or her beliefs in light of evidence,
called Bayes’ rule. Assume that a learner is evaluating a set of hypotheses, and has assigned a “prior”
probability P(h) to each hypothesis % in that set. Then, Bayes’ rule indicates that after seeing data d, the
learner should assign each hypothesis a “posterior” probability P(h|d) proportional to P(h) multiplied by
the probability of observing d if h were true, P(d|h). Bayes’ rule is a principled way to combine constraints
on hypotheses from prior knowledge with the evidence provided by data, and motivates much contemporary
research in statistical artificial intelligence and machine learning.

Despite the promise of Bayesian inference as a framework for studying human inductive inference, this
approach faces two serious challenges. First, probabilistic inference is extremely computationally intensive,
particularly with the large numbers of complex hypotheses needed to model realistic human performance.
Second, capturing the kinds of inferences that people are capable of making requires going beyond a simple
evaluation of a fixed, discrete set of hypotheses, and considering how we can define models that are flexible,
being able to support rich hypothesis spaces that can adapt to accommodate the data. The research supported
by this grant focused on addressing these two challenges, with the goal of producing automated systems
capable of fast, flexible, rational inductive inference.

The research was divided into two objectives, each addressed by three different lines of work. The
remainder of this report summarizes the results of these lines of work. Publications resulting from the work
are cited and appear in the reference list. These publications summarize the data collected as part of the grant
and describe relevant models at a level where they can be re-implemented.

2 Objective 1: Psychological and neural mechanisms for fast inductive inference

Despite their growing popularity in cognitive science, probabilistic models of cognition are often criticized
for not identifying psychological or neural mechanisms that might support the computations involved in
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Bayesian inference. Part of the issue stems from the fact that probabilistic models provide a different kind of
explanation of human cognition than other approaches, answering questions about the abstract computational
problems involved in cognition. However, answers at this level of analysis should guide investigation at the
levels of algorithm and implementation, and one of the challenges for the probabilistic approach is to develop
a clear account of how the underlying computations could be carried out.

Efficient implementation of probabilistic inference is not just a problem in cognitive science — it is an is-
sue that arises in computer science and statistics, resulting in a number of promising solutions. The proposed
research will explore whether these solutions seem to correspond to the way that people make inductive
inferences, and whether the strategies that people use might lead to new approximation schemes that can be
applied in machine learning. In particular, this aspect of the project focused on on the potential implications
of Monte Carlo algorithms, which approximate a probability distribution with a set of samples from that
distribution. Sophisticated Monte Carlo schemes provide methods for recursively updating a set of samples
from a distribution as more data are obtained, providing an answer to the question of how learners with finite
memory resources might be able to maintain a distribution over a large hypothesis space.

The research funded by this grant explored three important issues inspired by this idea: how well Monte
Carlo methods work as accounts of human inductive inference, how these methods connect to neural compu-
tation, and how human cognition might inspire new methods for approximating probabilistic inference. An
overview of these ideas appears in Griffiths, Vul, and Sanborn (2012).

Objective 1.1: Evaluating Monte Carlo methods as rational process models

Since no approximation scheme is perfect, we can study whether the way in which different approximations
behave correspond to the patterns we see in human behavior. For example, some approximation methods
exhibit order effects (particularly primacy effects), something that has been identified as a challenge for
Bayesian models of cognition. The research supported by this grant examined whether sophisticated Monte
Carlo techniques perform in a way that is similar to human inference across a range of inductive problems.

Our research examined two kinds of Monte Carlo algorithms: particle filters, and Markov chain Monte
Carlo. A particle filter approximates a sequentially-updated posterior probability distribution with a set of
samples from that distribution, adjusting the samples as more data are observed in order to maintain a good
approximation. Abbott and Griffiths (2011) showed that particle filters can produce both primacy and recency
effects — two kinds of order effects that emerge in human causal learning. These results demonstrate that this
kind of Monte Carlo method might provide a viable explanation for order effects observed for other aspects
of human cognition, addressing one of the main empirical challenges to Bayesian models of cognition.

Our work on Markov chain Monte Carlo examined the contexts where a random walk in a representa-
tional space might account for human behavior. Abbott, Austerweil, and Griffiths (2013) showed that this
simple stochastic mechanism can account for a set of findings in the literature on semantic memory. A ran-
dom walk on a semantic network reproduces the main empirical phenomena of semantic fluency, demonstrat-
ing a “clustering” of semantically related items. This provides a far simpler explanation for these phenomena
than previous proposals.

Lieder, Griffiths, and Goodman (2013) took the idea of Markov chain Monte Carlo as a cognitive process
in a different direction, examining the question of how long a rational learner should run a simulation before
making a decision. The surprising result of this analysis was that when there is a cost for the time spent
waiting for an answer, learners should simulate for a fairly short amount of time, resulting in a significant bias
in responses. This bias turns out to be the same as that found in experiments on “anchoring and adjustment”,
providing a compelling rational account of a phenomenon that has typically been taken as evidence of human
irrationality.
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Objective 1.2: Connecting to neural computation

Monte Carlo methods also provide a way to connect Bayesian inference and artificial neural networks, pro-
viding a picture in which existing connectionist approaches provides a substrate for Bayesian inference.
Abbott, Hamrick, and Griffiths (2013) explored this connection, demonstrating that one of the Monte Carlo
algorithms that has previously been connected to human cognition — importance sampling — can be imple-
mented in a standard neural network model used to capture associative memory. This is an important result,
as it is the first demonstration that this kind of probabilistic inference can be performed using distributed
representations, potentially providing an avenue for performing probabilistic inference over structured rep-
resentations in a fixed neural architecture.

In another line of research, Griffiths, Austerweil, and Berthiaume (2012) connected Bayesian inference
and neural network models at a more abstract level of analysis. This work showed that simple neural net-
works can be characterized as performing Bayesian inference with a particular prior distribution, providing
a formal foundation for exploring the similarities and differences between these approaches.

Objective 1.3: Developing new approximation algorithms

Studying human cognition can provide clues that lead to new approximation algorithms. For example, hu-
man minds often operate under more extreme constraints than most statistical algorithms. In this spirit,
we developed a new class of algorithms for probabilistic inference that only maintain a single hypothesis
in memory at a time, and only take a single pass through a dataset (Bonawitz, Denison, Chen, Gopnik, &
Griffiths, 2011). These algorithms are based on the “win-stay, lose-shift” principle, sticking (stochastically)
with a hypothesis as long as it explains observed data, and switching away when it does not. The resulting
algorithms can approximate Bayesian inference as well as a single sample from the posterior distribution. A
journal article presenting a series of experiments comparing these algorithms to the behavior of adults and
children is currently under review (Bonawitz, Denison, Gopnik, & Griffiths, under review).

2.1 Objective 2: Using nonparametric Bayesian methods to define flexible probabilistic models

Human inductive inferences are characterized by flexibility: people are able to learn about the world around
them without having rigid constraints placed on the hypotheses they consider. For example, we would not
assume that there are just three types of things in the world, that objects can only possess a finite number
of observable features, or that causal relationships have to be linear. However, this kind of assumption
is common in statistical models, where constraints are placed on the number of components in a mixture
model, the dimensionality of a latent space, or the functional form of a dependency between two variables.

Recent work in nonparametric Bayesian statistics has begun to make it possible to define probabilistic
models that consider an infinite number of structured hypotheses. These models include components that are
based on complex stochastic processes, such as the Dirichlet process or Gaussian processes, which define
distributions appropriate for nonparametric problems. For example, the Dirichlet process defines a distri-
bution on a discrete but uncountable set of atoms. This makes it useful as a prior in an “infinite” mixture
model, where each of these atoms corresponds to the parameters of a mixture component. The resulting
model can identify as many clusters as needed in order to capture the structure of observed data, rather than
being limited to some finite number a priori.

The research supported by this grant explored connections between nonparametric Bayesian statistics
and human cognition, focusing on whether this approach can result in the kind of flexibility that is needed to
model human inferences. There were three lines of research: one looked at learning systems of categories,
one focused on inferring the features of objects, and one considered how to capture the properties of complex
systems involving continuous quantities.
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Objective 2.1: Learning systems of categories

Most models of human category learning focus on learning a small number of unrelated categories, but most
actual category learning involves learning a large number of related categories. For example, we have to
simultaneously learn categories like “dog”, “pet”, and “mammal”. Canini and Griffiths (2011) extended an
existing nonparametric Bayesian framework — hierarchical Dirichlet processes — to address learning category
structures of this kind, making it possible to infer the structure of a taxonomy relating a set of categories as
well as the categories themselves. This approach resulted in a powerful tool for inferring category represen-
tations in any taxonomically organized domain, and produced results consistent with human behavior.

Feldman, Griffiths, Goldwater, and Morgan (in press) explored a different way in which categories can
be related — through higher-level constraints that govern which categories can appear together. Specifically,
when learning phonetic categories — the sounds that make up speech — learning the words that those sounds
appear in provides sufficiently strong constraints that it converts the problem from one that is almost impos-
sible to solve into one that can be solved surprisingly well. The resulting system is the first to be able to infer
realistic phonetic categories directly from simulated speech data.

Objective 2.2: Forming feature-based representations

Nonparametric Bayesian models can also be used to infer the number and identity of the features that charac-
terize a set of objects. Griffiths and Ghahramani (2011) summarized the key ideas behind a novel approach to
solving this problem, based on a stochastic process known as the Indian buffet process. Austerweil and Grif-
fiths (2011) showed that this approach produces results that are consistent with human feature learning, and
Austerweil and Griffiths (2010) extended this approach to learn features that are invariant to a particular set
of transformations. The results of this work are summarized in a long article forthcoming in Psychological
Review (Austerweil & Griffiths, in press).

Objective 2.3: Representing objects with continuous dimensions

Developing flexible statistical models that can represent objects with continuous dimensions remains a chal-
lenge. The work supported by this grant took on this challenge for two kinds of representations: images and
causal relationships. The work on images used Bayesian methods to identify the relevant reference frame
and orientation of elements of a scene (Austerweil, Friesen, & Griffiths, 2011), the most representative im-
age in a collection (Abbott, Heller, Ghahramani, & Griffiths, 2011), and the actions that appear in a video
stream (Buchsbaum, Canini, & Griffiths, 2011). In each of these cases, a flexible Bayesian model produced
predictions that were closely aligned with human performance.

Our work on causal systems considered how existing research on Bayesian models of causal relationships
could be extended to capture the continuous elements of these relationships. To this end, we considered how
to define appropriate prior distributions on the strength of causal relationships (Yeung & Griffiths, 2011), how
people infer causal relationships expressed in continuous time (Pacer & Griffiths, 2012), and how Bayesian
inference can be used to explain a set of results in perceptual causality that have traditionally been taken as
supporting the use of error-prone heuristics (Sanborn, Mansinghka, & Griffiths, in press). The results of this
research are a set of models of human causal reasoning that can directly inform work on causality in machine
learning.

3 Impact

The potential impact of the proposed research lies in two areas, corresponding to the two disciplines that will
be brought together by this project: psychology and computer science. On the psychology side, the models
we have developed provide greater insight into the factors that are involved when people solve inductive
problems, allowing us to identify methods for more efficient training and ways of dealing with cases where
the approximations that people use lead them to make errors. This work has already been very influential

Final Report Page 4



and generated a number of citations — the review article by Tenenbaum et al. (2011) already has 149 citations
in Google Scholar, despite having come out in 2011.

On the computer science side, developing a deeper understanding of the formal principles that underlie
human inductive inference will pave the way towards building automated systems that match and ultimately
exceed human performance. In particular, understanding how people efficiently make inferences over rich
(and potentially unbounded) hypothesis spaces will be a first step towards making automated systems that
are capable of fast, flexible, rational inductive inference. Our work has already had an impact on computer
science, encouraging the development of more sophisticated systems for computer vision that are capable of
automatically identifying the features of images.

4 Dissertations supported by this grant

e Canini, K. R. (2011). Nonparametric hierarchical Bayesian models of categorization (Doctoral disser-
tation). Technical Report UCB/EECS-2011-133, EECS Department, University of California, Berke-
ley. (Available at: http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-133.html)

e Austerweil, J. L. (2012). Constructing flexible feature representations using nonparametric Bayesian
inference. Unpublished doctoral dissertation. (Available on request.)
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